This paper is an exposition of work of the author et al. detailing fascinating connections between several mathematical problems which lie on the intersection of several mathematics subjects, namely algebraic-differential geometry, analysis on manifolds, complex-harmonic analysis, data science, partial differential equations, optimization and probability. A significant portion of the work is based on joint research with Charles Fefferman in the papers [39, 40, 41, 42]. The topics of this work include (a) The space of maps of bounded mean oscillation (BMO) in $\mathbb R^D,\, D\geq 2$. (b) The labeled and unlabeled near alignment and Procrustes problem for point sets with certain geometries and for not too thin compact sets both in $\mathbb R^D,\, D\geq 2$. (c) The Whitney near isometry extension problem for point sets with certain geometries and for not too thin compact sets both in $\mathbb R^D,\, D\geq 2$. (d) Partitions and clustering of compact sets and point sets with certain geometries in $\mathbb R^D,\, D\geq 2$ and analysis on certain manifolds in $\mathbb R^D,\, D\geq 2$. Many open problems for future research are given.
翻译:本文是作者等人作品的解说,详细介绍了几个数学科目交叉点上的一些数学问题之间的令人着迷的联系,即代数差异几何、对数分析、复杂和谐分析、数据科学、部分差异方程式、优化和概率。相当一部分工作是基于与查尔斯·费弗曼在论文[39、40、41、42]中的联合研究。这项工作的专题包括:(a) 以美元计的捆绑平均值振动图(BMO)的面积,以美元计的,以美元计的,以美元计的。(b) 标定的和未标定的接近对齐和质问题,以某些几组的点为标签和标定的和标定的,以美元计的,以美元计的,以美元计的。 (d) 以美元计的点和以美元计的点为惠特尼的离子延伸扩展问题,以美元计的标定的平面和标定的标定的,以2美元计的,以美元计的。