Data used in image segmentation are not always defined on the same grid. This is particularly true for medical images, where the resolution, field-of-view and orientation can differ across channels and subjects. Images and labels are therefore commonly resampled onto the same grid, as a pre-processing step. However, the resampling operation introduces partial volume effects and blurring, thereby changing the effective resolution and reducing the contrast between structures. In this paper we propose a splat layer, which automatically handles resolution mismatches in the input data. This layer pushes each image onto a mean space where the forward pass is performed. As the splat operator is the adjoint to the resampling operator, the mean-space prediction can be pulled back to the native label space, where the loss function is computed. Thus, the need for explicit resolution adjustment using interpolation is removed. We show on two publicly available datasets, with simulated and real multi-modal magnetic resonance images, that this model improves segmentation results compared to resampling as a pre-processing step.
翻译:图像分割中所使用的数据并非总在同一网格上定义。 对于医学图像来说尤其如此, 分辨率、 视野和方向可能因频道和主题而不同。 因此, 图像和标签通常作为预处理步骤被重新标到同一个网格上。 但是, 重新标注操作会带来部分体积效应和模糊, 从而改变有效的分辨率, 并缩小结构之间的对比 。 在本文中, 我们建议一个样层, 自动处理输入数据中的分辨率错配。 这个层将每个图像推到执行前方传票的平均空间 。 由于 Sprlat 操作员是重新标注操作的连接点, 平均空间预测可以拖回本地标签空间, 以计算损失函数 。 因此, 需要通过内推法进行清晰的分辨率调整。 我们用两个公开的数据集显示, 模拟的和真实的多模式磁共振动图像, 这个模型可以改进分解结果, 与预处理步骤的重标相比 。