Attention mechanisms are a central property of cognitive systems allowing them to selectively deploy cognitive resources in a flexible manner. Attention has been long studied in the neurosciences and there are numerous phenomenological models that try to capture its core properties. Recently attentional mechanisms have become a dominating architectural choice of machine learning and are the central innovation of Transformers. The dominant intuition and formalism underlying their development has drawn on ideas of keys and queries in database management systems. In this work, we propose an alternative Bayesian foundation for attentional mechanisms and show how this unifies different attentional architectures in machine learning. This formulation allows to to identify commonality across different attention ML architectures as well as suggest a bridge to those developed in neuroscience. We hope this work will guide more sophisticated intuitions into the key properties of attention architectures and suggest new ones.


翻译:注意机制是认知系统的中心属性,使它们能够以灵活的方式选择性地调用认知资源。注意力长期以来一直是神经科学研究的重点,存在着许多试图捕捉其核心特性的现象学模型。最近,注意力机制已成为机器学习的主要建筑选择,并成为Transformer的核心创新。其发展所依据的主要直觉和形式化是数据库管理系统中键和查询的思想。在这项工作中,我们提出了注意机制的另一种贝叶斯基础,并展示了如何统一机器学习中的不同注意结构。这种表述允许我们跨不同的注意机器学习结构进行共性识别,并提出与神经科学中发展的注意力机制之间的桥梁。我们希望这项工作能够引导对注意力结构的核心特性更为成熟的直觉,并提出新的想法。

0
下载
关闭预览

相关内容

注意力机制介绍,Attention Mechanism
专知会员服务
168+阅读 · 2019年10月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Attention is All You Need | 每周一起读
PaperWeekly
10+阅读 · 2017年6月28日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2021年5月17日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
注意力机制介绍,Attention Mechanism
专知会员服务
168+阅读 · 2019年10月13日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Attention is All You Need | 每周一起读
PaperWeekly
10+阅读 · 2017年6月28日
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员