Conditional image synthesis aims to create an image according to some multi-modal guidance in the forms of textual descriptions, reference images, and image blocks to preserve, as well as their combinations. In this paper, instead of investigating these control signals separately, we propose a new two-stage architecture, UFC-BERT, to unify any number of multi-modal controls. In UFC-BERT, both the diverse control signals and the synthesized image are uniformly represented as a sequence of discrete tokens to be processed by Transformer. Different from existing two-stage autoregressive approaches such as DALL-E and VQGAN, UFC-BERT adopts non-autoregressive generation (NAR) at the second stage to enhance the holistic consistency of the synthesized image, to support preserving specified image blocks, and to improve the synthesis speed. Further, we design a progressive algorithm that iteratively improves the non-autoregressively generated image, with the help of two estimators developed for evaluating the compliance with the controls and evaluating the fidelity of the synthesized image, respectively. Extensive experiments on a newly collected large-scale clothing dataset M2C-Fashion and a facial dataset Multi-Modal CelebA-HQ verify that UFC-BERT can synthesize high-fidelity images that comply with flexible multi-modal controls.
翻译:有条件的图像合成旨在根据文本描述、参考图像和图像块等形式的多模式指导以及组合等形式的图像保存。 在本文中,我们不分别调查这些控制信号,而是提出一个新的两阶段结构,即UFC-BERT,以统一任何数量的多模式控制。在UFC-BERT中,各种控制信号和合成图像都统一代表为由变异器处理的离散象征物序列。不同于DALL-E和VQGAN等现有的两阶段自动递增方法,UFC-BERT在第二阶段采用非侵略性生成(NAR),以提高合成图像的整体一致性,支持保存特定图像块,并改进合成速度。此外,我们设计了一种渐进式算法,以迭代方式改进不向下生成的图像,由两位灵活估计者帮助评估对综合图像的遵守情况并评估其准确性,分别是DALL-E-E和VQGGAN, UF-BERT在第二阶段采用非侵略性生成的生成(NAR)生成(NAR),以提高整体图像整体一致性的图像整体一致性,用于新收集高比例的多级的多级的图像数据分析系统,可以对高等级数据系统。