The current trend in developing machine learning models for reading comprehension and logical reasoning tasks is focused on improving the models' abilities to understand and utilize logical rules. This work focuses on providing a novel loss function and accompanying model architecture that has more interpretable components than some other models by representing a common strategy employed by humans when given reading comprehension and logical reasoning tasks. This strategy involves emphasizing relative accuracy over absolute accuracy and can theoretically produce the correct answer without full knowledge of the information required to solve the question. We examine the effectiveness of applying such a strategy to train transfer learning models to solve reading comprehension and logical reasoning questions. The models were evaluated on the ReClor dataset, a challenging reading comprehension and logical reasoning benchmark. We propose the polytuplet loss function, an extension of the triplet loss function, to ensure prioritization of learning the relative correctness of answer choices over learning the true accuracy of each choice. Our results indicate that models employing polytuplet loss outperform existing baseline models. Although polytuplet loss is a promising alternative to other contrastive loss functions, further research is required to quantify the benefits it may present.
翻译:暂无翻译