Numerous research studies in the field of federated learning (FL) have attempted to use personalization to address the heterogeneity among clients, one of FL's most crucial and challenging problems. However, existing works predominantly focus on tailoring models. Yet, due to the heterogeneity of clients, they may each require different choices of hyperparameters, which have not been studied so far. We pinpoint two challenges of personalized federated hyperparameter optimization (pFedHPO): handling the exponentially increased search space and characterizing each client without compromising its data privacy. To overcome them, we propose learning a \textsc{H}yper\textsc{P}arameter \textsc{N}etwork (HPN) fed with client encoding to decide personalized hyperparameters. The client encoding is calculated with a random projection-based procedure to protect each client's privacy. Besides, we design a novel mechanism to debias the low-fidelity function evaluation samples for learning HPN. We conduct extensive experiments on FL tasks from various domains, demonstrating the superiority of HPN.
翻译:在联邦学习(FL)领域的众多研究中,已经尝试使用个性化来解决客户端的异构性—— FL 的最重要和最具挑战性的问题之一。但是,现有的工作主要集中在定制模型上。然而,由于客户端的异构性,他们可能需要不同的超参数选择,这方面尚未被研究。我们指出了个性化联邦超参数优化(pFedHPO)的两个挑战:处理呈倍增长的搜索空间和刻画每个客户端而不影响其数据隐私。为了克服这些问题,我们提出了学习一个 \textsc{H}yper\textsc{P}arameter \textsc{N}etwork(HPN),其使用客户端编码进行馈送,以决定个性化超参数。采用基于随机投影的过程计算客户端编码,以保护每个客户端的隐私。此外,我们设计了一种新的机制来消除低保真度函数评估样本的偏差,以学习 HPN。我们在来自不同领域的 FL 任务上进行了广泛的实验,证明了 HPN 的优越性。