Numerous research studies in the field of federated learning (FL) have attempted to use personalization to address the heterogeneity among clients, one of FL's most crucial and challenging problems. However, existing works predominantly focus on tailoring models. Yet, due to the heterogeneity of clients, they may each require different choices of hyperparameters, which have not been studied so far. We pinpoint two challenges of personalized federated hyperparameter optimization (pFedHPO): handling the exponentially increased search space and characterizing each client without compromising its data privacy. To overcome them, we propose learning a \textsc{H}yper\textsc{P}arameter \textsc{N}etwork (HPN) fed with client encoding to decide personalized hyperparameters. The client encoding is calculated with a random projection-based procedure to protect each client's privacy. Besides, we design a novel mechanism to debias the low-fidelity function evaluation samples for learning HPN. We conduct extensive experiments on FL tasks from various domains, demonstrating the superiority of HPN.


翻译:在联邦学习(FL)领域的众多研究中,已经尝试使用个性化来解决客户端的异构性—— FL 的最重要和最具挑战性的问题之一。但是,现有的工作主要集中在定制模型上。然而,由于客户端的异构性,他们可能需要不同的超参数选择,这方面尚未被研究。我们指出了个性化联邦超参数优化(pFedHPO)的两个挑战:处理呈倍增长的搜索空间和刻画每个客户端而不影响其数据隐私。为了克服这些问题,我们提出了学习一个 \textsc{H}yper\textsc{P}arameter \textsc{N}etwork(HPN),其使用客户端编码进行馈送,以决定个性化超参数。采用基于随机投影的过程计算客户端编码,以保护每个客户端的隐私。此外,我们设计了一种新的机制来消除低保真度函数评估样本的偏差,以学习 HPN。我们在来自不同领域的 FL 任务上进行了广泛的实验,证明了 HPN 的优越性。

0
下载
关闭预览

相关内容

【AAAI2023】类增量学习的在线超参数优化
专知会员服务
19+阅读 · 2023年1月18日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员