In this paper, we study the problem of learning an unknown quantum circuit of a certain structure. If the unknown target is an $n$-qubit Clifford circuit, we devise an efficient algorithm to reconstruct its circuit representation by using $O(n^2)$ queries to it. For decades, it has been unknown how to handle circuits beyond the Clifford group since the stabilizer formalism cannot be applied in this case. Herein, we study quantum circuits of $T$-depth one on the computational basis. We show that the output state of a $T$-depth one circuit {\textit{of full $T$-rank}} can be represented by a stabilizer pseudomixture with a specific algebraic structure. Using Pauli and Bell measurements on copies of the output states, we can generate a hypothesis circuit that is equivalent to the unknown target circuit on computational basis states as input. If the number of $T$ gates of the target is of the order $O({{\log n}})$, our algorithm requires $O(n^2)$ queries to it and produces its equivalent circuit representation on the computational basis in time $O(n^3)$. Using further additional $O(4^{3n})$ classical computations, we can derive an exact description of the target for arbitrary input states. Our results greatly extend the previously known facts that stabilizer states can be efficiently identified based on the stabilizer formalism.
翻译:在本文中, 我们研究学习某个结构的未知量子电路的问题。 如果未知目标为美元- qubit 克里福德电路, 我们就会设计一个高效的算法, 以使用$O (n)2美元查询来重建其电路代表。 数十年来, 我们一直不知道如何处理克里福德集团以外的电路, 因为在此情况下无法应用稳定化的正式形式。 在此情况下, 我们研究计算基础上的量子电路( $T) 深度为$T。 我们的算法需要美元( $2美元) 深度的一台电路的输出状态, 完全为$T- rextit 。 我们的算法可以通过一个固定化的假算法来重建其电路代表 。 利用保罗和贝尔的测量方法来复制输出状态, 我们可以产生一种与计算基础状态上未知的目标电路路路路相当的假设电路路。 如果这个目标的门数在计算基础上是 $( ⁇ n ⁇ ) 。 我们的算法需要 $( n2美元) 对其进行更深入的查询, 并生成其等的电路路路代表 以我们的正正态计算结果, 。