An Eulerian circuit in a directed graph is one of the most fundamental Graph Theory notions. Detecting if a graph $G$ has a unique Eulerian circuit can be done in polynomial time via the BEST theorem by de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, 1941-1951 (involving counting arborescences), or via a tailored characterization by Pevzner, 1989 (involving computing the intersection graph of simple cycles of $G$), both of which thus rely on overly complex notions for the simpler uniqueness problem. In this paper we give a new linear-time checkable characterization of directed graphs with a unique Eulerian circuit. This is based on a simple condition of when two edges must appear consecutively in all Eulerian circuits, in terms of cut nodes of the underlying undirected graph of $G$. As a by-product, we can also compute in linear-time all maximal $\textit{safe}$ walks appearing in all Eulerian circuits, for which Nagarajan and Pop proposed in 2009 a polynomial-time algorithm based on Pevzner characterization.
翻译:定向图形中的尤利安电路是最基本的图形理论概念之一。 检测图形$$$是否具有独特的尤利安电路, 可以通过1941- 1951年的德布鲁伊恩、 范阿登- 埃赫伦费斯特、 史密斯和图特的最佳理论, 通过1941- 1951年的德布鲁伊恩、 范阿登- 埃赫伦费斯特、 史密斯和图特的最佳理论, 通过1941- 1951年的德布鲁伊恩、 范阿登- 埃赫伦费斯特、 史密斯和图特特尔特, 或者通过Pevzner 1989年的量身定制特征( 涉及计算简单周期$$$的交叉图) 进行。 两者因此都依赖过于复杂的概念来解决更简单的独特独特独特性问题。 在本文中, 我们对带有独特电路的定向图进行新的线性检查性描述。 其依据是两种边缘必须连续出现在所有尤利安电路中的简单条件,, 即根基无方向图的节点断节点, 。 作为副产品, 我们还可以用直线时间计算所有最大 $\ text { safafafe} 出现于2009年的纳加列亚 和波亚 基调 和波亚 。