Transshipment, also known under the names of earth mover's distance, uncapacitated min-cost flow, or Wasserstein's metric, is an important and well-studied problem that asks to find a flow of minimum cost that routes a general demand vector. Adding to its importance, recent advancements in our understanding of algorithms for transshipment have led to breakthroughs for the fundamental problem of computing shortest paths. Specifically, the recent near-optimal $(1+\varepsilon)$-approximate single-source shortest path algorithms in the parallel and distributed settings crucially solve transshipment as a central step of their approach. The key property that differentiates transshipment from other similar problems like shortest path is the so-called \emph{boosting}: one can boost a (bad) approximate solution to a near-optimal $(1 + \varepsilon)$-approximate solution. This conceptually reduces the problem to finding an approximate solution. However, not all approximations can be boosted -- there have been several proposed approaches that were shown to be susceptible to boosting, and a few others where boosting was left as an open question. The main takeaway of our paper is that any black-box $\alpha$-approximate transshipment solver that computes a \emph{dual} solution can be boosted to an $(1 + \varepsilon)$-approximate solver. Moreover, we significantly simplify and decouple previous approaches to transshipment (in sequential, parallel, and distributed settings) by showing all of them (implicitly) obtain approximate dual solutions. Our analysis is very simple and relies only on the well-known multiplicative weights framework. Furthermore, to keep the paper completely self-contained, we provide a new (and arguably much simpler) analysis of multiplicative weights that leverages well-known optimization tools to bypass the ad-hoc calculations used in the standard analyses.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
20+阅读 · 2021年9月22日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
10+阅读 · 2019年2月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员