Radiance Fields (RF) are popular to represent casually-captured scenes for new view generation and have been used for applications beyond it. Understanding and manipulating scenes represented as RFs have to naturally follow to facilitate mixed reality on personal spaces. Semantic segmentation of objects in the 3D scene is an important step for that. Prior segmentation efforts using feature distillation show promise but don't scale to complex objects with diverse appearance. We present a framework to interactively segment objects with fine structure. Nearest neighbor feature matching identifies high-confidence regions of the objects using distilled features. Bilateral filtering in a joint spatio-semantic space grows the region to recover accurate segmentation. We show state-of-the-art results of segmenting objects from RFs and compositing them to another scene, changing appearance, etc., moving closer to rich scene manipulation and understanding. Project Page: https://rahul-goel.github.io/isrf/
翻译:红外线( RF) 十分受欢迎, 代表了新视觉生成的偶然捕获场景, 并被用于其以外的应用。 理解和操控场景作为RF代表的场景必须自然跟随, 以便利个人空间的混杂现实。 3D场中的物体的语义分割是其中的一个重要步骤。 先前使用特性蒸馏的分割努力显示了希望, 但不向有不同外观的复杂对象缩放。 我们为具有精细结构的互动区段对象提供了一个框架。 近邻特征匹配确定了使用蒸馏特性的物体的高度信任区域。 在一个联合的spatio- semantic 空间进行双边过滤, 使区域成长起来, 以恢复准确的分割。 我们展示了从 RFs 分割对象到另一个场段的艺术状态结果, 改变外观等, 接近丰富的场景的操纵和理解。 项目页面: https://rahul-goel.github. io/isrf/ 。