The Set Packing problem is, given a collection of sets $\mathcal{S}$ over a ground set $\mathcal{U}$, to find a maximum collection of sets that are pairwise disjoint. The problem is among the most fundamental NP-hard optimization problems that have been studied extensively in various computational regimes. The focus of this work is on parameterized complexity, Parameterized Set Packing (PSP): Given $r \in {\mathbb N}$, is there a collection $ \mathcal{S}' \subseteq \mathcal{S}: |\mathcal{S}'| = r$ such that the sets in $\mathcal{S}'$ are pairwise disjoint? Unfortunately, the problem is not fixed parameter tractable unless $\mathsf{W[1] = FPT}$, and, in fact, an "enumeration" running time of $|\mathcal{S}|^{\Omega(r)}$ is required unless the exponential time hypothesis (ETH) fails. This paper is a quest for tractable instances of Set Packing from parameterized complexity perspectives. We say that the input $(\mathcal{U},\mathcal{S})$ is "compact" if $|\mathcal{U}| = f(r)\cdot\Theta(\textsf{poly}( \log |\mathcal{S}|))$, for some $f(r) \ge r$. In the Compact Set Packing problem, we are given a compact instance of PSP. In this direction, we present a "dichotomy" result of PSP: When $|\mathcal{U}| = f(r)\cdot o(\log |\mathcal{S}|)$, PSP is in $\textsf{FPT}$, while for $|\mathcal{U}| = r\cdot\Theta(\log (|\mathcal{S}|))$, the problem is $W[1]$-hard; moreover, assuming ETH, Compact PSP does not even admit $|\mathcal{S}|^{o(r/\log r)}$ time algorithm. Although certain results in the literature imply hardness of compact versions of related problems such as Set $r$-Covering and Exact $r$-Covering, these constructions fail to extend to Compact PSP. A novel contribution of our work is the identification and construction of a gadget, which we call Compatible Intersecting Set System pair, that is crucial in obtaining the hardness result for Compact PSP.


翻译:设置包装问题在于, 以每立每立每立每立每立每立每立每立每立每立每立每立每立每美元, 以寻找每立每立每立每立每立每立每立每美元的最大集合。 问题是在各种计算制度中广泛研究的最根本性的 NP- 硬优化问题之一 。 这项工作的重点是参数复杂性, 参数化的成套包装问题 (PSP): 美元( 美元) 以每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每美元)美元, 美元( 美元) 美元, 除非每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立</s>

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月18日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
32+阅读 · 2021年3月8日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员