Human-robot shared control, which integrates the advantages of both humans and robots, is an effective approach to facilitate efficient surgical operation. Learning from demonstration (LfD) techniques can be used to automate some of the surgical subtasks for the construction of the shared control mechanism. However, a sufficient amount of data is required for the robot to learn the manoeuvres. Using a surgical simulator to collect data is a less resource-demanding approach. With sim-to-real adaptation, the manoeuvres learned from a simulator can be transferred to a physical robot. To this end, we propose a sim-to-real adaptation method to construct a human-robot shared control framework for robotic surgery. In this paper, a desired trajectory is generated from a simulator using LfD method, while dynamic motion primitives (DMP) is used to transfer the desired trajectory from the simulator to the physical robotic platform. Moreover, a role adaptation mechanism is developed such that the robot can adjust its role according to the surgical operation contexts predicted by a neural network model. The effectiveness of the proposed framework is validated on the da Vinci Research Kit (dVRK). Results of the user studies indicated that with the adaptive human-robot shared control framework, the path length of the remote controller, the total clutching number and the task completion time can be reduced significantly. The proposed method outperformed the traditional manual control via teleoperation.
翻译:将人类和机器人的优势结合起来的人类机器人共享控制,是便利高效外科手术操作的有效方法。从演示(LfD)技术中学习可以用来将一些用于构建共享控制机制的外科子任务自动化。 但是,需要足够数量的数据让机器人学习操作。 使用外科模拟器收集数据是一种不太需要资源的方法。 通过模拟到现实的适应, 从模拟器中学到的动作可以转移到物理机器人。 为此,我们提议了一种模拟到真实的调整方法, 用于为机器人外科手术构建一个人类机器人共享控制框架。 在本文中, 使用LfD 方法从模拟器生成了理想的轨迹, 而动态运动原始(DMP) 用于将理想的轨迹从模拟器转移到物理机器人平台。 此外, 通过模拟到现实的适应机制, 机器人可以根据神经网络模型预测的外科手术操作环境调整自己的作用。 拟议的框架的实效是模拟的, 通过智能网络模型的远程控制模型, 显示整个时间框架的实效, 与共享的用户控制框架 。