One of the main goals of reinforcement learning (RL) is to provide a~way for physical machines to learn optimal behavior instead of being programmed. However, effective control of the machines usually requires fine time discretization. The most common RL methods apply independent random elements to each action, which is not suitable in that setting. It is not feasible because it causes the controlled system to jerk, and does not ensure sufficient exploration since a~single action is not long enough to create a~significant experience that could be translated into policy improvement. In our view these are the main obstacles that prevent application of RL in contemporary control systems. To address these pitfalls, in this paper we introduce an RL framework and adequate analytical tools for actions that may be stochastically dependent in subsequent time instances. We also introduce an RL algorithm that approximately optimizes a~policy that produces such actions. It applies experience replay to adjust likelihood of sequences of previous actions to optimize expected $n$-step returns the policy yields. The efficiency of this algorithm is verified against four other RL methods (CDAU, PPO, SAC, ACER) in four simulated learning control problems (Ant, HalfCheetah, Hopper, and Walker2D) in diverse time discretization. The algorithm introduced here outperforms the competitors in most cases considered.


翻译:强化学习(RL)的主要目标之一是为物理机器提供学习最佳行为而不是编程的最佳行为的方法。然而,对机器的有效控制通常需要精细的时间分解。最常见的RL方法对每个行动都应用独立随机元素,这在当时情况下是不合适的。它不可行,因为它导致受控制的系统自干,并且没有确保充分的探索,因为一个环单行动的时间不够长,不足以创造可以转化为政策改进的微大经验。我们认为,这些是阻碍在当代控制系统中应用RL的主要障碍。要解决这些陷阱,我们在本文件中为以后可能具有托盘依赖性的行动引入一个RL框架和适当的分析工具。我们还引入了一种RL算法,该算法大约优化了产生这种行动的~政策。它运用了经验来调整以前行动的顺序的可能性,以优化预期的美元分步数返回政策效果。在四个模拟的Hopperal-RL(Ant Ant, PPO, SAC, ACER)中,根据四种不同的RL方法(CD CD)核实了这一算法的效率。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员