Decision trees are a ubiquitous model for classification and regression tasks due to their interpretability and efficiency. However, solving the optimal decision tree (ODT) problem remains a challenging combinatorial optimization task. Even for the simplest splitting rules--axis-parallel hyperplanes--it is NP-hard to optimize. In Part I of this series, we rigorously defined the proper decision tree model through four axioms and, based on these, introduced four formal definitions of the ODT problem. From these definitions, we derived four generic algorithms capable of solving ODT problems for arbitrary decision trees satisfying the axioms. We also analyzed the combinatorial geometric properties of hypersurfaces, showing that decision trees defined by polynomial hypersurface splitting rules satisfy the proper axioms that we proposed. In this second paper (Part II) of this two-part series, building on the algorithmic and geometric foundations established in Part I, we introduce the first hypersurface decision tree (HODT) algorithm. To the best of our knowledge, existing optimal decision tree methods are, to date, limited to hyperplane splitting rules--a special case of hypersurfaces--and rely on general-purpose solvers. In contrast, our HODT algorithm addresses the general hypersurface decision tree model without requiring external solvers. Using synthetic datasets generated from ground-truth hyperplane decision trees, we vary tree size, data size, dimensionality, and label and feature noise. Results showing that our algorithm recovers the ground truth more accurately than axis-parallel trees and exhibits greater robustness to noise. We also analyzed generalization performance across 30 real-world datasets, showing that HODT can achieve up to 30% higher accuracy than the state-of-the-art optimal axis-parallel decision tree algorithm when tree complexity is properly controlled.
翻译:决策树因其可解释性和高效性而成为分类与回归任务中普遍使用的模型。然而,求解最优决策树(ODT)问题仍是一个具有挑战性的组合优化任务。即使对于最简单的分割规则——轴平行超平面——其优化也是NP难的。在本系列的第一部分中,我们通过四条公理严格定义了规范决策树模型,并在此基础上提出了ODT问题的四种形式化定义。从这些定义出发,我们推导出四种通用算法,能够求解满足公理的任意决策树的ODT问题。我们还分析了超曲面的组合几何性质,证明了由多项式超曲面分割规则定义的决策树满足我们提出的规范公理。在这篇由两部分组成的系列文章的第二部分(第二部分)中,基于第一部分建立的算法与几何基础,我们提出了首个超曲面决策树(HODT)算法。据我们所知,现有的最优决策树方法至今仅限于超平面分割规则——这是超曲面的一个特例——并且依赖于通用求解器。相比之下,我们的HODT算法处理一般的超曲面决策树模型,无需外部求解器。使用从真实超平面决策树生成的合成数据集,我们变化了树的大小、数据规模、维度以及标签和特征噪声。结果表明,我们的算法比轴平行树更准确地恢复真实结构,并且对噪声表现出更强的鲁棒性。我们还分析了在30个真实世界数据集上的泛化性能,表明在适当控制树复杂度的情况下,HODT能够比最先进的最优轴平行决策树算法实现高达30%的准确率提升。