In this paper, a lifelong learning problem is studied for an Internet of Things (IoT) system. In the considered model, each IoT device aims to balance its information freshness and energy consumption tradeoff by controlling its computational resource allocation at each time slot under dynamic environments. An unmanned aerial vehicle (UAV) is deployed as a flying base station so as to enable the IoT devices to adapt to novel environments. To this end, a new lifelong reinforcement learning algorithm, used by the UAV, is proposed in order to adapt the operation of the devices at each visit by the UAV. By using the experience from previously visited devices and environments, the UAV can help devices adapt faster to future states of their environment. To do so, a knowledge base shared by all devices is maintained at the UAV. Simulation results show that the proposed algorithm can converge $25\%$ to $50\%$ faster than a policy gradient baseline algorithm that optimizes each device's decision making problem in isolation.


翻译:本文为物联网(IoT)系统研究了终身学习问题,在考虑的模型中,每个IoT装置都旨在通过控制动态环境中每个时段的计算资源分配来平衡其信息新鲜度和能源消耗量的权衡。无人驾驶飞行器(UAV)是作为飞行基地站部署的,以使IoT装置适应新的环境。为此,提出了由UAV使用的新的终身强化学习算法,以适应无人驾驶飞行器每次访问的装置操作。利用以前访问过的装置和环境的经验,无人驾驶飞行器可以帮助装置更快地适应其环境的未来状态。为此,UAV系统保持了所有装置共享的知识库。模拟结果表明,拟议的算法可以比政策梯度基线算法同步25 $ 至 50 $ 。 该算法可以使每个装置在孤立时作出最佳决定。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
6+阅读 · 2018年4月3日
Arxiv
15+阅读 · 2018年4月3日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关VIP内容
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员