For $k \ge 2$ and a positive integer $d_0$, we show that if there exists no quaternary Hermitian linear complementary dual $[n,k,d]$ code with $d \ge d_0$ and Hermitian dual distance greater than or equal to $2$, then there exists no quaternary Hermitian linear complementary dual $[n,k,d]$ code with $d \ge d_0$ and Hermitian dual distance $1$. As a consequence, we generalize a result by Araya, Harada and Saito on the nonexistence of some quaternary Hermitian linear complementary dual codes.
翻译:对于美元=2美元和正整数=0美元,我们表明,如果没有四环黑美帝国线性补充双重 $(n),k,d) 代码与美元=0.00美元和埃美美双程超过或等于$2美元,那么就没有四环黑美帝国线性补充双轨代码$(n),k,d) 代码与美元=0.00美元和埃美美双程美元。因此,我们概括了阿拉亚、哈拉达和赛藤关于不存在一些四环黑美帝国线性补充双轨代码的结果。