Relation extraction is a central task in natural language processing (NLP) and information retrieval (IR) research. We argue that an important type of relation not explored in NLP or IR research to date is that of an event being an argument - required or optional - of another event. We introduce the human-annotated Event Dependency Relation dataset (EDeR) which provides this dependency relation. The annotation is done on a sample of documents from the OntoNotes dataset, which has the added benefit that it integrates with existing, orthogonal, annotations of this dataset. We investigate baseline approaches for predicting the event dependency relation, the best of which achieves an accuracy of 82.61 for binary argument/non-argument classification. We show that recognizing this relation leads to more accurate event extraction (semantic role labelling) and can improve downstream tasks that depend on this, such as co-reference resolution. Furthermore, we demonstrate that predicting the three-way classification into the required argument, optional argument or non-argument is a more challenging task.


翻译:关系抽取是自然语言处理(NLP)和信息检索(IR)研究中的核心任务。我们认为,NLP或IR研究中尚未探索的一个重要类型的关系是事件作为另一个事件的参数(必需的或可选的参数)。我们介绍了人工注释的事件依赖关系数据集(EDeR),该数据集提供这种依赖关系。注释在OntoNotes数据集的文档样本上进行,这具有与现有的正交注释集成的附加优势。我们研究了预测事件依赖关系的基线方法,其中最佳方法的二分类参数/非参数分类准确率达到82.61。我们表明,识别这种关系可以导致更准确的事件提取(语义角色标记)并可以改善取决于此的下游任务,例如共指消解。此外,我们证明,预测三分分类为必需参数、可选参数或非参数是一个更具挑战性的任务。

0
下载
关闭预览

相关内容

【ICLR2022】序列生成的目标侧数据增强
专知会员服务
23+阅读 · 2022年2月14日
专知会员服务
57+阅读 · 2021年1月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
综述 | 事件抽取及推理 (上)
开放知识图谱
87+阅读 · 2019年1月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
【ICLR2022】序列生成的目标侧数据增强
专知会员服务
23+阅读 · 2022年2月14日
专知会员服务
57+阅读 · 2021年1月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员