项目名称: 事件本体形式化方法中的几个重要问题
项目编号: No.61273328
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 刘宗田
作者单位: 上海大学
项目金额: 81万元
中文摘要: 在已提出的事件本体模型的基础上,集中研究事件本体中的形式化问题。对于事件类的对象、动作、时间和环境等要素,采用形式语言、标度规范、形式概念分析、语法制导等技术,分别解决。对于语言表现要素,采用机器学习技术,针对各个事件类,从中文文本语料中提取语言规律,半自动地综合成为事件本体中的语言表现规则。对于断言要素,参照Hoare逻辑,构造事件归纳表达式,对应于事件类之间的各种组成关系,构造相应的推理规则,形成推理体系。对于事件本体中的不确定性和不精确性问题,尝试相对简单的模态扩展和量词扩展,将事件本体中的不确定和不精确成分近似映射到扩展逻辑上,实现不确定性推理。这项研究对于完善事件本体模型起到关键的作用,将使事件本体具有更强的推理功能,充分体现事件本体的优越,为建立实用规模的开放事件本体奠定基础。
中文关键词: 本体形式化;概念代数;描述逻辑;Hoare 逻辑;深度学习
英文摘要: On the basis of the proposed event ontology model, our study will be concentrated on the formalization of event ontology.For the elements of event class: object, action, time and environment, the technology of formal language, scale specification, formal concept analysis and syntax directed will be adopted to solve the problem of their formalization respectively.As for the language expression element, machine learning technology will be utilized to extract language regulations from Chinese text corpus which will be semi-automatically integrated into language expression rules in event ontology for each event class.With regards to the assertion element, event induction expression will be constructed according to Hoare logic, then for the various component relations between event classes, corresponding inference rules will be constructed and inference system will be formed. For the problem of uncertainty and imprecision in event ontology, relatively simple modal expansion and quantifier expansion will be attempted to map the composition of uncertainty and imprecision to expansion logic in order to realize inference for uncertainty.This study will play a key part in the improvement of the event ontology model, enhance the inference ability, fully reflect the advantage of event ontology and it will lay the foundation
英文关键词: Ontology formalization;Concept Algebra;description logic;Hoare logic;deep learning