Objects, in the real world, rarely occur in isolation and exhibit typical arrangements governed by their independent utility, and their expected interaction with humans and other objects in the context. For example, a chair is expected near a table, and a computer is expected on top. Humans use this spatial context and relative placement as an important cue for visual recognition in case of ambiguities. Similar to human's, DNN's exploit contextual information from data to learn representations. Our research focuses on harnessing the contextual aspects of visual data to optimize data annotation and enhance the training of deep networks. Our contributions can be summarized as follows: (1) We introduce the notion of contextual diversity for active learning CDAL and show its applicability in three different visual tasks semantic segmentation, object detection and image classification, (2) We propose a data repair algorithm to curate contextually fair data to reduce model bias, enabling the model to detect objects out of their obvious context, (3) We propose Class-based annotation, where contextually relevant classes are selected that are complementary for model training under domain shift. Understanding the importance of well-curated data, we also emphasize the necessity of involving humans in the loop to achieve accurate annotations and to develop novel interaction strategies that allow humans to serve as fact-checkers. In line with this we are working on developing image retrieval system for wildlife camera trap images and reliable warning system for poor quality rural roads. For large-scale annotation, we are employing a strategic combination of human expertise and zero-shot models, while also integrating human input at various stages for continuous feedback.
翻译:暂无翻译