We develop a general deterministic distributed method for locally rounding fractional solutions of graph problems for which the analysis can be broken down into analyzing pairs of vertices. Roughly speaking, the method can transform fractional/probabilistic label assignments of the vertices into integral/deterministic label assignments for the vertices, while approximately preserving a potential function that is a linear combination of functions, each of which depends on at most two vertices (subject to some conditions usually satisfied in pairwise analyses). The method unifies and significantly generalizes prior work on deterministic local rounding techniques [Ghaffari, Kuhn FOCS'21; Harris FOCS'19; Fischer, Ghaffari, Kuhn FOCS'17; Fischer DISC'17] to obtain polylogarithmic-time deterministic distributed solutions for combinatorial graph problems. Our general rounding result enables us to locally and efficiently derandomize a range of distributed algorithms for local graph problems, including maximal independent set (MIS), maximum-weight independent set approximation, and minimum-cost set cover approximation. As a highlight, we in particular obtain a deterministic $O(\log^2\Delta\cdot\log n)$-round algorithm for computing an MIS in the LOCAL model and an almost as efficient $O(\log^2\Delta\cdot\log\log\Delta\cdot\log n)$-round deterministic MIS algorithm in the CONGEST model. As a result, the best known deterministic distributed time complexity of the four most widely studied distributed symmetry breaking problems (MIS, maximal matching, $(\Delta+1)$-vertex coloring, and $(2\Delta-1)$-edge coloring) is now $O(\log^2\Delta\cdot\log n)$. Our new MIS algorithm is also the first direct polylogarithmic-time deterministic distributed MIS algorithm, which is not based on network decomposition.


翻译:我们开发了一种一般的确定性分布方法, 用于本地四面八方的图形问题分解解决方案, 分析可以细分成对双脊椎。 粗略地说, 该方法可以将脊椎的分解/ 概率标签任务转换成对脊椎的整体/ 确定性标签任务, 同时, 大致保留一种功能的线性组合, 每个功能都取决于最多两个垂直( 取决于一些通常在对称分析中满足的条件 ) 。 该方法统一并大大概括了先前关于确定性本地四面技术的工作 [Ghaffari, Kuhnhn FOCS'21; Harris FOCS'19; Fischer, Ghaffari, Khnh FOCS'17; Fisherch DISC'17] 以获得调色度- 时间确定性分布式的图像。 我们一般的循环结果使我们能够在本地和高效率地解析地对本地图表问题进行一系列的分布式算, 包括最高值的数数数- 直径( MIS)、 独立设置最高重量的直径直径直径直径直径, 和最起码的数级的直径直径直径对数的计算。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Independence testing in high dimensions
Arxiv
0+阅读 · 2022年10月31日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员