We present a mathematically well founded approach for the synthetic modeling of turbulent flows using generative adversarial networks (GAN). Based on the analysis of chaotic, deterministic systems in terms of ergodicity, we outline a mathematical proof that GAN can actually learn to sample state snapshots form the invariant measure of the chaotic system. Based on this analysis, we study a hierarchy of chaotic systems starting with the Lorenz attractor and then carry on to the modeling of turbulent flows with GAN. As training data, we use fields of velocity fluctuations obtained from large eddy simulations (LES). Two architectures are investigated in detail: we use a deep, convolutional GAN (DCGAN) to synthesise the turbulent flow around a cylinder. We furthermore simulate the flow around a low pressure turbine stator using the pix2pixHD architecture for a conditional DCGAN being conditioned on the position of a rotating wake in front of the stator. The settings of adversarial training and the effects of using specific GAN architectures are explained. We thereby show that GAN are efficient in simulating turbulence in technically challenging flow problems on the basis of a moderate amount of training data. GAN training and inference times significantly fall short when compared with classical numerical methods, in particular LES, while still providing turbulent flows in high resolution. We furthermore analyse the statistical properties of the synthesized and LES flow fields, which agree excellently. We also show the ability of the conditional GAN to generalize over changes of geometry by generating turbulent flow fields for positions of the wake that are not included in the training data.
翻译:我们用基因对抗网络(GAN)为动荡流动的合成模型提供了一个数学基础良好的方法。根据对混乱和确定性系统的分析,我们概述了一个数学证据,证明GAN能够实际学习对状态的截图进行抽样截图,形成混乱系统的不稳定度量。根据这一分析,我们研究混乱系统的等级,从Lorenz吸引器开始,然后继续使用GAN的动荡流的模型。作为培训数据,我们使用从大型埃迪模拟(LES)获得的快速波动领域。对两个结构进行了详细调查:我们使用一个深层的、革命性GAN(DCGAN)来合成一个圆柱形的动荡流。我们进一步模拟在低压力涡轮机结构周围的流流流流,使用Pix2pixHd 结构来进行有条件的DCGAN,以在螺旋后台前的轮回状态为条件。我们通过具体的GAN模拟模型(LES)的运行环境和效果。我们由此而显示,GAN的流流流流流的稳定性是中度,在对GAN的流流中,在高层次数据进行分析时,在模拟的流中,在模拟的流中,在模拟的流中,数据流中,数据流的流中,在模拟中提供了一种稳定的数据流中,在计算数据流流中,在高的流中, 的流中,在计算数据流的流中,在数值的流中,在高的流中,在计算中,在计算中,我们提供了一种稳定的数据流中,在数值的流中,在计算中,在计算数据流中,在数值的流中提供了对数值的流中,在计算中,在计算中,在计算中,在计算中,在数值的流中,在计算中,在计算中,在数值的流中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中的数据在计算中,在计算中,在计算中的数据在计算中,在计算中的数据在计算数据流中,在计算中的数据在计算中,在计算中,在计算中,在计算中,在计算中,数据流中,在计算数据流中,数据流中,数据流中,在计算中,在计算中,在计算中,在计算中,在