Bayesian network (BN) structure learning from complete data has been extensively studied in the literature. However, fewer theoretical results are available for incomplete data, and most are related to the Expectation-Maximisation (EM) algorithm. Balov (2013) proposed an alternative approach called Node-Average Likelihood (NAL) that is competitive with EM but computationally more efficient; and he proved its consistency and model identifiability for discrete BNs. In this paper, we give general sufficient conditions for the consistency of NAL; and we prove consistency and identifiability for conditional Gaussian BNs, which include discrete and Gaussian BNs as special cases. Furthermore, we confirm our results and the results in Balov (2013) with an independent simulation study. Hence we show that NAL has a much wider applicability than originally implied in Balov (2013), and that it is competitive with EM for conditional Gaussian BNs as well.


翻译:文献中广泛研究了从完整数据中学习的巴伊西亚网络(BN)结构,然而,对于不完整数据而言,理论结果较少,而且大多与期望-最大化算法有关。Balov(2013年)提出了一个与EM具有竞争力但计算效率更高的替代方法(NAL),Beesian Network (NB) ;他证明了离散BNs的一致性和模型可识别性。在本文中,我们为NAL的一致性提供了充分的一般性条件;我们证明有条件的高斯BNs(包括作为特殊案例的离散和高斯班)的一致性和可识别性。此外,我们通过独立模拟研究确认了我们在Balov(2013年)的结果和结果。因此我们表明,NAL比原先在Balov(2013年)中所隐含的要广泛得多的适用性,而且与有条件高斯(Gaussian BNs)的EM也具有竞争力。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
17+阅读 · 2019年3月28日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
17+阅读 · 2019年3月28日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员