This paper shows that the heterogeneity in neuronal and synaptic dynamics reduces the spiking activity of a Recurrent Spiking Neural Network (RSNN) while improving prediction performance, enabling spike-efficient (unsupervised) learning. We analytically show that the diversity in neurons' integration/relaxation dynamics improves an RSNN's ability to learn more distinct input patterns (higher memory capacity), leading to improved classification and prediction performance. We further prove that heterogeneous Spike-Timing-Dependent-Plasticity (STDP) dynamics of synapses reduce spiking activity but preserve memory capacity. The analytical results motivate Heterogeneous RSNN design using Bayesian optimization to determine heterogeneity in neurons and synapses to improve $\mathcal{E}$, defined as the ratio of spiking activity and memory capacity. The empirical results on time series classification and prediction tasks show that optimized HRSNN increases performance and reduces spiking activity compared to a homogeneous RSNN.
翻译:本文表明,神经和合成动态的异质性能减少了经常的Spiking神经网络(RSNN)的突触活动,同时提高了预测性能,从而能够进行快速(不受监督的)学习。我们分析表明,神经元整合/减缩动态的多样性提高了RSN学习更独特的输入模式(高记忆能力)的能力,从而改进了分类和预测性能。我们进一步证明,Spiking神经网络(RSNN)各异的Spiking-Timming-Depended-Platictive(STDP)突触动性能减少了浮现活动,但保留了内存能力。分析结果激发了利用Bayesian优化的超异性RSNNN设计,以确定神经和神经元的异性性性性能,即被定义为闪烁活动和记忆能力的比率。时间序列分类和预测任务的经验结果表明,与单一的 RSNN相比,优化的HRSNN会提高性能并减少spipking活动。