Monocular depth estimation plays a critical role in various computer vision and robotics applications such as localization, mapping, and 3D object detection. Recently, learning-based algorithms achieve huge success in depth estimation by training models with a large amount of data in a supervised manner. However, it is challenging to acquire dense ground truth depth labels for supervised training, and the unsupervised depth estimation using monocular sequences emerges as a promising alternative. Unfortunately, most studies on unsupervised depth estimation explore loss functions or occlusion masks, and there is little change in model architecture in that ConvNet-based encoder-decoder structure becomes a de-facto standard for depth estimation. In this paper, we employ a convolution-free Swin Transformer as an image feature extractor so that the network can capture both local geometric features and global semantic features for depth estimation. Also, we propose a Densely Cascaded Multi-scale Network (DCMNet) that connects every feature map directly with another from different scales via a top-down cascade pathway. This densely cascaded connectivity reinforces the interconnection between decoding layers and produces high-quality multi-scale depth outputs. The experiments on two different datasets, KITTI and Make3D, demonstrate that our proposed method outperforms existing state-of-the-art unsupervised algorithms.


翻译:单眼深度估计在各种计算机视觉和机器人应用中发挥着关键作用,例如本地化、绘图和3D对象探测。最近,学习型算法通过以监督方式对大量数据进行模型培训,在深度估计中取得了巨大成功。然而,为监督培训获得密集的地面真相深度标签,以及利用单眼序列进行不受监督的深度估计,是一个大有希望的替代方法。不幸的是,大多数关于未经监督的深度估计研究探索损失功能或隐蔽面罩,而基于ConvNet的编码脱coder结构的模型结构在深度估计中几乎没有多大变化。在本论文中,我们使用一个无革命性的Swin变换器作为图像特征提取器,以便网络能够捕捉本地几何特征和用于深度估计的全球语义特征。此外,我们建议建立一个高密度的连锁多尺度网络(DCMNet),通过一个上下级级的级联动路径将每个地图直接连接到另一个不同尺度的地段图。这种不紧密的连通性连接强化了我们所拟的解层和高质量的高级数据结构。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
310+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员