With the increasing need for multi-robot for exploring the unknown region in a challenging environment, efficient collaborative exploration strategies are needed for achieving such feat. A frontier-based Rapidly-Exploring Random Tree (RRT) exploration can be deployed to explore an unknown environment. However, its' greedy behavior causes multiple robots to explore the region with the highest revenue, which leads to massive overlapping in exploration process. To address this issue, we present a temporal memory-based RRT (TM-RRT) exploration strategy for multi-robot to perform robust exploration in an unknown environment. It computes adaptive duration for each frontier assigned and calculates the frontier's revenue based on the relative position of each robot. In addition, each robot is equipped with a memory consisting of frontier assigned and share among fleets to prevent repeating assignment of same frontier. Through both simulation and actual deployment, we have shown the robustness of TM-RRT exploration strategy by completing the exploration in a 25.0m x 54.0m (1350.0m2) area, while the conventional RRT exploration strategy falls short.
翻译:由于在具有挑战性的环境中勘探未知区域越来越需要多机器人,因此需要有效的合作勘探战略,才能取得这样的成就。可以部署以边界为基础的快速探索随机树(RRT)勘探来探索一个未知的环境。然而,它的贪婪行为导致多个机器人以收入最高的方式探索该区域,从而导致勘探过程的大规模重叠。为了解决这一问题,我们提出了一个基于时间的RRT(TM-RRT)勘探战略,以便多机器人在一个未知的环境中进行强有力的勘探。它计算了每个指定边界的适应期限,并根据每个机器人的相对位置计算出边境的收入。此外,每个机器人都拥有由指定边界和船队分享的记忆,以防止同一边界的重复分配。通过模拟和实际部署,我们通过在25.0mx54.0m(1350.00m2)地区完成勘探,显示了TM-RRT勘探战略的稳健性,而常规RRT勘探战略则很短。