In the Oil and Gas industry, estimating a subsurface velocity field is an essential step in seismic processing, reservoir characterization, and hydrocarbon volume calculation. Full-waveform inversion (FWI) velocity modeling is an iterative advanced technique that provides an accurate and detailed velocity field model, although at a very high computational cost due to the physics-based numerical simulations required at each FWI iteration. In this study, we propose a method of generating velocity field models, as detailed as those obtained through FWI, using a conditional generative adversarial network (cGAN) with multiple inputs. The primary motivation of this approach is to circumvent the extremely high cost of full-waveform inversion velocity modeling. Real-world data were used to train and test the proposed network architecture, and three evaluation metrics (percent error, structural similarity index measure, and visual analysis) were adopted as quality criteria. Based on these metrics, the results evaluated upon the test set suggest that the GAN was able to accurately match real FWI generated outputs, enabling it to extract from input data the main geological structures and lateral velocity variations. Experimental results indicate that the proposed method, when deployed, has the potential to increase the speed of geophysical reservoir characterization processes, saving on time and computational resources.


翻译:在石油和天然气工业中,估计地表下速度场是地震处理、储油层特征鉴定和碳氢化合物数量计算方面的一个重要步骤。全波变换速度模型是一种迭代先进技术,它提供了准确和详细的速度场模型,尽管由于每个FWI迭代需要基于物理的数值模拟,计算成本非常高。在本研究中,我们提出了一个生成速度场模型的方法,该方法与通过FWI获得的模型一样详细,使用有条件的基因对抗网络(cGAN)和多种投入生成的模型。这一方法的主要动机是绕过全波变换速度模型极高的成本。使用现实世界数据来培训和测试拟议的网络结构,并采用三种评价指标(误差、结构相似指数计量和视觉分析)作为质量标准。根据这些基准,根据测试集评估的结果表明,GAN能够准确匹配实际的FWI生成的产出,使其能够从输入的数据中提取主要地质结构以及横向速度变异的数据,在部署地球空间空间空间数据时,实验结果显示,在部署后,可能将地球空间物理测算方法实现。

0
下载
关闭预览

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
专知会员服务
62+阅读 · 2020年3月4日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员