Classifier guidance is a recently introduced method to trade off mode coverage and sample fidelity in conditional diffusion models post training, in the same spirit as low temperature sampling or truncation in other types of generative models. Classifier guidance combines the score estimate of a diffusion model with the gradient of an image classifier and thereby requires training an image classifier separate from the diffusion model. It also raises the question of whether guidance can be performed without a classifier. We show that guidance can be indeed performed by a pure generative model without such a classifier: in what we call classifier-free guidance, we jointly train a conditional and an unconditional diffusion model, and we combine the resulting conditional and unconditional score estimates to attain a trade-off between sample quality and diversity similar to that obtained using classifier guidance.
翻译:分类指导是最近采用的一种方法,用以在有条件的传播模型后的培训中,以低温取样或其他类型基因模型脱节的同样精神,交换模式覆盖率和样本忠诚性。分类指导将传播模型的分数估计与图像分类器的梯度结合起来,从而要求培训一个与传播模型分开的图像分类器。它还提出了指南能否在没有分类器的情况下进行的问题。我们表明,指导确实可以通过一个纯基因化模型来进行,而没有这种分类器:我们称之为“无分类器”的指南,我们联合培训一个有条件和无条件的传播模型,我们将由此产生的有条件和无条件的评分估计数结合起来,以便在抽样质量和多样性之间实现权衡,与使用分类器指导获得的相似。