An innovative design method of conformal array antennas is presented by utilizing characteristic mode analysis (CMA) in this work. A single-layer continuous perfect electric conductor under bending conditions is conducted by CMA to evaluate the variations in operating performance. By using this method, the design process of a conformal array is simplified. The results indicate that the operating performance of the antenna with single-layer metal radiation structure remains stable within a certain range of curvature. Subsequently, an infinite array element using single-layer metal radiation structure is designed, operating in ultra-wideband and dual polarization. Following, an 8 * 8 ultra-wideband dual-polarized cylindrical-conformal array (UDCA) is developed by wrapping the planar arrays to a cylindric surface, which has a stable operating performance even at a curvature radius as small as 100 mm. Finally, a physical prototype is cost-effectively fabricated by novel manufacturing solutions that stack three-layer conformal substrate. The experimental result demonstrates that the proposed UDCA with a 1.2{\lambda} curvature radius operates at 3.6~9.6 GHz (90.9%) and achieves 60{\deg} wide-angle scanning in two principal planes, which provides a practical and promising solution for conformal array applications. The insights derived from the CMA offer a direction for further advancement in conformal antenna research.
翻译:暂无翻译