Let $\mathbf{X} = (X_i)_{1\leq i \leq n}$ be an i.i.d. sample of square-integrable variables in $\mathbb{R}^d$, \GB{with common expectation $\mu$ and covariance matrix $\Sigma$, both unknown.} We consider the problem of testing if $\mu$ is $\eta$-close to zero, i.e. $\|\mu\| \leq \eta $ against $\|\mu\| \geq (\eta + \delta)$; we also tackle the more general two-sample mean closeness (also known as {\em relevant difference}) testing problem. The aim of this paper is to obtain nonasymptotic upper and lower bounds on the minimal separation distance $\delta$ such that we can control both the Type I and Type II errors at a given level. The main technical tools are concentration inequalities, first for a suitable estimator of $\|\mu\|^2$ used a test statistic, and secondly for estimating the operator and Frobenius norms of $\Sigma$ coming into the quantiles of said test statistic. These properties are obtained for Gaussian and bounded distributions. A particular attention is given to the dependence in the pseudo-dimension $d_*$ of the distribution, defined as $d_* := \|\Sigma\|_2^2/\|\Sigma\|_\infty^2$. In particular, for $\eta=0$, the minimum separation distance is ${\Theta}( d_*^{\frac{1}{4}}\sqrt{\|\Sigma\|_\infty/n})$, in contrast with the minimax estimation distance for $\mu$, which is ${\Theta}(d_e^{\frac{1}{2}}\sqrt{\|\Sigma\|_\infty/n})$ (where $d_e:=\|\Sigma\|_1/\|\Sigma\|_\infty$). This generalizes a phenomenon spelled out in particular by Baraud (2002).


翻译:Lets\mathb{X} = (X_i)\\\{{{{{{{leq i\leq n} = 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
Top
微信扫码咨询专知VIP会员