We merge computational mechanics' definition of causal states (predictively-equivalent histories) with reproducing-kernel Hilbert space (RKHS) representation inference. The result is a widely-applicable method that infers causal structure directly from observations of a system's behaviors whether they are over discrete or continuous events or time. A structural representation -- a finite- or infinite-state kernel $\epsilon$-machine -- is extracted by a reduced-dimension transform that gives an efficient representation of causal states and their topology. In this way, the system dynamics are represented by a stochastic (ordinary or partial) differential equation that acts on causal states. We introduce an algorithm to estimate the associated evolution operator. Paralleling the Fokker-Plank equation, it efficiently evolves causal-state distributions and makes predictions in the original data space via an RKHS functional mapping. We demonstrate these techniques, together with their predictive abilities, on discrete-time, discrete-value infinite Markov-order processes generated by finite-state hidden Markov models with (i) finite or (ii) uncountably-infinite causal states and (iii) continuous-time, continuous-value processes generated by thermally-driven chaotic flows. The method robustly estimates causal structure in the presence of varying external and measurement noise levels and for very high dimensional data.
翻译:我们将因果状态的计算机械学定义(推定等值历史)与再生核心Hilbert空间(RKHS)代表法的推论合并。结果是一种广泛适用的方法,从对系统行为观测中直接推断因果结构,而观察该系统的行为是否超离或连续事件或时间。结构代表法 -- -- 有限或无限状态内核$\epsilon-Machine -- -- 是通过一个缩小的分化变来提取的,它能高效地代表因果状态及其地形学。这样,系统动态就代表着一个对因果状态有影响的随机(正常或部分)差异方程式。我们引入了一种算法来估计相关的进化操作者。同时,它有效地演化了因果状态分布,并通过RKHSS功能绘图在原始数据空间中作出预测。我们展示了这些技术及其预测能力,涉及离时、离值无限的离值Markov-顺序过程,它是由固定的隐性(正常的或局部的)差异性方位模型所生成的(固定的) 和由持续、不断的、不断的因果的外部数据结构生成的(以不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、不断的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的外部的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、由的、