Defining multivariate generalizations of the classical univariate ranks has been a long-standing open problem in statistics. Optimal transport has been shown to offer a solution by transporting data points to grid approximating a reference measure (Chernozhukov et al., 2017; Hallin, 2017; Hallin et al., 2021a). We take up this new perspective to develop and study multivariate analogues of popular correlations measures including the sign covariance, Kendall's tau and Spearman's rho. Our tests are genuinely distribution-free, hence valid irrespective of the actual (absolutely continuous) distributions of the observations. We present asymptotic distribution theory for these new statistics, providing asymptotic approximations to critical values to be used for testing independence as well as an analysis of power of the resulting tests. Interestingly, we are able to establish a multivariate elliptical Chernoff-Savage property, which guarantees that, under ellipticity, our nonparametric tests of independence when compared to Gaussian procedures enjoy an asymptotic relative efficiency of one or larger. Hence, the nonparametric tests constitute a safe replacement for procedures based on multivariate Gaussianity.
翻译:定义古典单亚麻黄碱等级的多变量概括是一个长期存在的统计问题。 最优化的运输已证明通过将数据点运输到接近网格的参照度衡量标准(Chernozhukov等人,2017年;Hallin,2017年;Hallin等人,2021年a)提供了一个解决方案。 我们从这个新角度来开发和研究包括标志共差、Kendall's tau和Spearman's rho在内的流行相关度衡量的多变量类比。 我们的测试是真正无分配的,因此无论观测的实际(绝对连续)分布如何,都是有效的。 我们为这些新统计数据提出了无线分布理论,为用于测试独立性的关键值提供了无症状的近似值,并对由此产生的测试力力进行了分析。 有趣的是,我们能够建立一个多变量的利差天体-萨瓦格属性,这保证了在精度下,我们对观测结果的实际(绝对连续)分布进行非参数性独立性测试。 我们为这些新统计提供了无线分布性分布式分布式分布式的理论, 与高斯拉氏度的多度测试程序相比, 成为了高斯拉度的替代程序。