We consider an optimal control problem for the steady-state Kirchhoff equation, a prototype for nonlocal partial differential equations, different from fractional powers of closed operators. Existence and uniqueness of solutions of the state equation, existence of global optimal solutions, differentiability of the control-to-state map and first-order necessary optimality conditions are established. The aforementioned results require the controls to be functions in $H^1$ and subject to pointwise upper and lower bounds. In order to obtain the Newton differentiability of the optimality conditions, we employ a Moreau-Yosida-type penalty approach to treat the control constraints and study its convergence. The first-order optimality conditions of the regularized problems are shown to be Newton diffentiable, and a generalized Newton method is detailed. A discretization of the optimal control problem by piecewise linear finite elements is proposed and numerical results are presented.
翻译:我们认为稳定状态Kirchhoff方程式(非局部部分差异方程式原型)是最佳控制问题,它不同于封闭运营商的分权。国家方程式解决办法的存在和独特性、全球最佳解决方案的存在、控制至状态地图的可差异性和一级必要最佳条件的确定。上述结果要求控制功能以$H1美元为单位,并须以尖锐的上下限为单位。为了获得牛顿最佳条件的可差异性,我们采用了摩洛-约西达型惩罚方法处理控制限制并研究其趋同性。常规化问题的第一阶最佳条件被证明是牛顿可调和通用的牛顿方法。提出了用小针线有限要素将最佳控制问题分解,并提出了数字结果。