In this paper we describe the implementation of semi-structured deep distributional regression, a flexible framework to learn conditional distributions based on the combination of additive regression models and deep networks. Our implementation encompasses (1) a modular neural network building system based on the deep learning library TensorFlow for the fusion of various statistical and deep learning approaches, (2) an orthogonalization cell to allow for an interpretable combination of different subnetworks, as well as (3) pre-processing steps necessary to set up such models. The software package allows to define models in a user-friendly manner via a formula interface that is inspired by classical statistical model frameworks such as mgcv. The packages' modular design and functionality provides a unique resource for both scalable estimation of complex statistical models and the combination of approaches from deep learning and statistics. This allows for state-of-the-art predictive performance while simultaneously retaining the indispensable interpretability of classical statistical models.
翻译:在本文中,我们描述了半结构化深度分布回归的落实情况,这是一个灵活的框架,以学习基于累加回归模型和深网络组合的有条件分布。我们的实施包括:(1) 基于深层学习图书馆TensorFlow的模块型神经网络建设系统,以融合各种统计和深层学习方法;(2) 用于将不同子网络进行可解释的组合的整形单元,以及(3) 建立此类模型所需的预处理步骤。软件包允许通过公式界面以方便用户的方式界定模型,该模块界面受传统统计模型框架(如 mgcv)的启发。软件包的模块设计和功能提供了一个独特的资源,既可以对复杂的统计模型进行可缩放的估计,也可以将深层学习和统计的方法结合起来。这允许在保留经典统计模型不可或缺的解释性的同时,采用最先进的预测性业绩。