We investigate an anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation. The method is one of the discontinuous Galerkin methods, simple and similar to the Crouzeix--Raviart finite element method. The main contributions of this paper are to show new proof for the consistency term. It allows us to obtain an anisotropic consistency error estimate. The idea of the proof is to use the relation between the Raviart--Thomas finite element space and the discontinuous space. In many papers, the inf-sup stable schemes of the discontinuous Galerkin method have been discussed on shape-regular mesh partitions. Our result shows that the Stokes pair, which is treated in this paper, satisfies the inf-sup condition on anisotropic meshes. Furthermore, we show an error estimate in an energy norm on anisotropic meshes. In numerical experiments, we have compared the calculation results for standard and anisotropic mesh partitions. The effectiveness of using anisotropic meshes can be confirmed for problems with boundary layers.
翻译:我们对斯托克斯方程式的厌食性过弱的对称内部惩罚方法进行调查。 该方法是一种不连续的加列尔金方法, 简单, 类似于Crouzix- Raviart 限制元素法。 本文的主要贡献是展示出一致性术语的新证据。 它允许我们获得厌食性一致性误差估计。 证明的理念是使用Raviart- Thomas 有限元素空间与不连续空间之间的关系。 许多论文都讨论了不连续的加列尔金方法的内向稳定方案。 我们的结果显示, 本文所处理的Stokes 配对满足了厌食性 meshes 的内向性条件。 此外, 我们在厌食性 meshes 的能源规范中显示了一个错误估计。 在数字实验中, 我们比较了标准与异性间隔断层的计算结果。 使用异性色色色色片的图像的有效性可以与边界层确认 。