Traffic sign detection is an important research direction in intelligent driving. Unfortunately, existing methods often overlook extreme conditions such as fog, rain, and motion blur. Moreover, the end-to-end training strategy for image denoising and object detection models fails to utilize inter-model information effectively. To address these issues, we propose CCSPNet, an efficient feature extraction module based on Transformers and CNNs, which effectively leverages contextual information, achieves faster inference speed and provides stronger feature enhancement capabilities. Furthermore, we establish the correlation between object detection and image denoising tasks and propose a joint training model, CCSPNet-Joint, to improve data efficiency and generalization. Finally, to validate our approach, we create the CCTSDB-AUG dataset for traffic sign detection in extreme scenarios. Extensive experiments have shown that CCSPNet achieves state-of-the-art performance in traffic sign detection under extreme conditions. Compared to end-to-end methods, CCSPNet-Joint achieves a 5.32% improvement in precision and an 18.09% improvement in mAP@.5.
翻译:暂无翻译