The Lov\'asz Local Lemma is a classic result in probability theory that is often used to prove the existence of combinatorial objects via the probabilistic method. In its simplest form, it states that if we have $n$ `bad events', each of which occurs with probability at most $p$ and is independent of all but $d$ other events, then under certain criteria on $p$ and $d$, all of the bad events can be avoided with positive probability. While the original proof was existential, there has been much study on the algorithmic Lov\'asz Local Lemma: that is, designing an algorithm which finds an assignment of the underlying random variables such that all the bad events are indeed avoided. Notably, the celebrated result of Moser and Tardos [JACM '10] also implied an efficient distributed algorithm for the problem, running in $O(\log^2 n)$ rounds. For instances with low $d$, this was improved to $O(d^2+\log^{O(1)}\log n)$ by Fischer and Ghaffari [DISC '17], a result that has proven highly important in distributed complexity theory (Chang and Pettie [SICOMP '19]). We give an improved algorithm for the Lov\'asz Local Lemma, providing a trade-off between the strength of the criterion relating $p$ and $d$, and the distributed round complexity. In particular, in the same regime as Fischer and Ghaffari's algorithm, we improve the round complexity to $O(\frac{d}{\log d}+\log^{O(1)}\log n)$. At the other end of the trade-off, we obtain a $\log^{O(1)}\log n$ round complexity for a substantially wider regime than previously known. As our main application, we also give the first $\log^{O(1)}\log n$-round distributed algorithm for the problem of $\Delta+o(\Delta)$-edge coloring a graph of maximum degree $\Delta$. This is an almost exponential improvement over previous results: no prior $\log^{o(1)} n$-round algorithm was known even for $2\Delta-2$-edge coloring.
翻译:本地 Lemma 是一个典型的概率理论, 它通常用来通过概率法来证明组合对象的存在。 以最简单的形式, 它指出, 如果我们有美元“ 坏事件 ”, 其中每个事件都有可能发生, 最多美元, 除了其他事件之外, 除了美元之外, 按照美元和美元的某些标准, 所有坏事件都可以以正的概率避免。 虽然最初的证据是存在性, 但对于计算法( Lov) 美元 的复杂度进行了大量研究。 也就是说, 设计一个算法, 找到所有坏事件都确实避免的基本随机变数。 值得注意的是, Moser 和 Tardos [ JACM'10] 的庆祝结果也意味着一个高效的分布算法, 以美元( log) 美元和 美元, 所有的坏事件都可以避免。 以美元 。 以美元, 以美元, 以 美元, 以 美元, 以 美元 美元, 以 美元 美元 的,, 以 美元 美元 的, 以 美元 美元 的, 美元 的, 以 美元 美元 的 的 的 的, 的,,, 以 以 美元 美元 美元 的 的 的 的, 的 的, 的 的 的 的, 的,,,,, 以,,,, 以, 以, 美元 美元,, 美元,,,,,,,, 的,, 以 以,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 以,,,,,,,,,,,,, 以 以 以 以, 以,,,,,,,,,,,