A singularly (near) optimal distributed algorithm is one that is (near) optimal in \emph{two} criteria, namely, its time and message complexities. For \emph{synchronous} CONGEST networks, such algorithms are known for fundamental distributed computing problems such as leader election [Kutten et al., JACM 2015] and Minimum Spanning Tree (MST) construction [Pandurangan et al., STOC 2017, Elkin, PODC 2017]. However, it is open whether a singularly (near) optimal bound can be obtained for the MST construction problem in general \emph{asynchronous} CONGEST networks. We present a randomized distributed MST algorithm that, with high probability, computes an MST in \emph{asynchronous} CONGEST networks and takes $\tilde{O}(D^{1+\epsilon} + \sqrt{n})$ time and $\tilde{O}(m)$ messages, where $n$ is the number of nodes, $m$ the number of edges, $D$ is the diameter of the network, and $\epsilon >0$ is an arbitrarily small constant (both time and message bounds hold with high probability). Our algorithm is message optimal (up to a polylog$(n)$ factor) and almost time optimal (except for a $D^{\epsilon}$ factor). Our result answers an open question raised in Mashregi and King [DISC 2019] by giving the first known asynchronous MST algorithm that has sublinear time (for all $D = O(n^{1-\epsilon})$) and uses $\tilde{O}(m)$ messages. Using a result of Mashregi and King [DISC 2019], this also yields the first asynchronous MST algorithm that is sublinear in both time and messages in the $KT_1$ CONGEST model. A key tool in our algorithm is the construction of a low diameter rooted spanning tree in asynchronous CONGEST that has depth $\tilde{O}(D^{1+\epsilon})$ (for an arbitrarily small constant $\epsilon > 0$) in $\tilde{O}(D^{1+\epsilon})$ time and $\tilde{O}(m)$ messages. To the best of our knowledge, this is the first such construction that is almost singularly optimal in the asynchronous setting.


翻译:奇数( 近) 最佳分布式算法是一种( 近) 最优化的计算法, 也就是它的时间和讯息复杂性。 对于 CONEST 网络来说, 这种算法以基本分布式计算问题而著称, 例如领导人选举 [Kutten et al., JACM 2015] 和最小的覆盖树( MST) 构建 [Pandurangan et al., STOC 2017, Elkin, PDC 2017] 。 然而, 但它开放了, 是否能够以一般的 emph =SUnelly commodel1 标准为MST 的( 近) 最佳( 最接近 ) 最佳的解算法 。 美元是, 美元是一个稳定的计算结果, 以我们的网络为最高( 美元) 时间 和 美元 数字 。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
0+阅读 · 2022年11月3日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员