When causal quantities cannot be point identified, researchers often pursue partial identification to quantify the range of possible values. However, the peculiarities of applied research conditions can make this analytically intractable. We present a general and automated approach to causal inference in discrete settings. We show causal questions with discrete data reduce to polynomial programming problems, and we present an algorithm to automatically bound causal effects using efficient dual relaxation and spatial branch-and-bound techniques. The user declares an estimand, states assumptions, and provides data (however incomplete or mismeasured). The algorithm then searches over admissible data-generating processes and outputs the most precise possible range consistent with available information -- i.e., sharp bounds -- including a point-identified solution if one exists. Because this search can be computationally intensive, our procedure reports and continually refines non-sharp ranges that are guaranteed to contain the truth at all times, even when the algorithm is not run to completion. Moreover, it offers an additional guarantee we refer to as $\epsilon$-sharpness, characterizing the worst-case looseness of the incomplete bounds. Analytically validated simulations show the algorithm accommodates classic obstacles, including confounding, selection, measurement error, noncompliance, and nonresponse.
翻译:当因果数量无法确定时,研究人员往往追求部分身份,以量化可能的数值范围。然而,应用研究条件的特殊性可以使这种分析难以掌握。我们展示了对离散环境中因果推断的一般和自动方法。我们展示了离散数据的因果问题,减少多式编程问题,我们展示了使用高效的双重放松和空间分支及受约束技术自动约束因果关系的算法。用户宣布了一个估计值,提出假设,并提供了数据(无论如何不完全或误测)。算法然后对可受理的数据程序和产出进行尽可能精确的搜索,其范围与现有信息一致 -- -- 即清晰的界限 -- -- 包括如果存在一个点定的解决方案。因为这种搜索可以进行计算密集,我们的程序报告和不断完善保证在任何时候都包含真相的非平均范围的非平均范围,即使算法尚未完成。此外,它提供了额外的保证,我们称之为$\eplon-shabration,将最差的生成数据过程和产出定性为符合现有信息的最精确范围 -- -- 即清晰的界限 -- -- 包括一个点定的解决方法 -- -- -- 如果存在的话,则包括一个点定型的解决方案,那么,则通过分析性模拟的模拟会显示,则显示不合规性障碍,包括不合规性选择、不合规性选择、不合规性、不精确的模拟、不正确性、不精确的模拟、不精确性选择、不精确性选择、不精确性、不精确性、不精确性选择、不精确性、不精确性、不精确性、不精确性选择。