In this work, we demonstrate how to adapt a publicly available pre-trained Jukebox model for the problem of audio source separation from a single mixed audio channel. Our neural network architecture for transfer learning is fast to train and results demonstrate comparable performance to other state-of-the-art approaches. We provide an open-source code implementation of our architecture (https://rebrand.ly/transfer-jukebox-github).
翻译:在这项工作中,我们展示了如何调整一个公开的、事先经过培训的“点唱机”模式,以解决与单一混合音频频道的音频源分离问题。我们的神经传输学习网络结构快速培训,结果显示与其他最先进方法的类似性能。我们提供了我们架构的开放源代码实施(https://rebrand.ly/transing-jukebox-gitub ) 。