We consider the reconstruction problem of video compressive sensing (VCS) under the deep unfolding/rolling structure. Yet, we aim to build a flexible and concise model using minimum stages. Different from existing deep unfolding networks used for inverse problems, where more stages are used for higher performance but without flexibility to different masks and scales, hereby we show that a 2-stage deep unfolding network can lead to the state-of-the-art (SOTA) results (with a 1.7dB gain in PSNR over the single stage model, RevSCI) in VCS. The proposed method possesses the properties of adaptation to new masks and ready to scale to large data without any additional training thanks to the advantages of deep unfolding. Furthermore, we extend the proposed model for color VCS to perform joint reconstruction and demosaicing. Experimental results demonstrate that our 2-stage model has also achieved SOTA on color VCS reconstruction, leading to a >2.3dB gain in PSNR over the previous SOTA algorithm based on plug-and-play framework, meanwhile speeds up the reconstruction by >17 times. In addition, we have found that our network is also flexible to the mask modulation and scale size for color VCS reconstruction so that a single trained network can be applied to different hardware systems. The code and models will be released to the public.


翻译:我们考虑的是在深层发展/滚动结构下重建视频压缩感(VCS)的问题。然而,我们的目标是建立一个使用最起码阶段的灵活和简洁模型。不同于用于反向问题的现有深层网络,在反向问题中,使用更多的阶段来提高性能,但又不灵活地使用不同的面具和比例。我们在此表明,一个分为两个阶段的深层网络可以导致在VCS中取得最新水平(SOTA)的结果(PSNR在单一阶段模型(RevSCI)中获得1.7dB的收益)。拟议方法具有适应新面罩的特性,可以在不受到任何额外培训的情况下将大数据缩放。此外,我们扩展了拟议的彩色VCSS模型,以进行联合重建和演示。实验结果表明,我们的2阶段模型还可以在彩色VCS重建方面实现SOTA(SOTA),导致PSNR在前一个基于插播框架的SOTA算法中获得 > 2.3dB的收益,同时加快了重建速度 > 17次。此外,我们发现我们的网络可以灵活地应用一个不同格式的硬件系统。

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员