Granger causality is a commonly used method for uncovering information flow and dependencies in a time series. Here we introduce JGC (Jacobian Granger Causality), a neural network-based approach to Granger causality using the Jacobian as a measure of variable importance, and propose a thresholding procedure for inferring Granger causal variables using this measure. The resulting approach performs consistently well compared to other approaches in identifying Granger causal variables, the associated time lags, as well as interaction signs. Lastly, through the inclusion of a time variable, we show that this approach is able to learn the temporal dependencies for nonstationary systems whose Granger causal structures change in time.
翻译:引因性是在一个时间序列中发现信息流动和依赖性的一种常用方法。 在这里我们引入了JGC(Jacobian Granger Gainger Causality),这是一个以神经网络为基础的方法,用Jacobian作为不同重要性的衡量尺度来对待引因性,并提出了一个使用这一计量来推断引因性变量的临界程序。 所产生的方法与其他方法相比,在确定引因因变量、相关时间滞后以及互动信号方面表现得始终如一。 最后,通过纳入一个时间变量,我们表明这一方法能够了解其因果结构在时间上发生变化的非静止系统的时间依赖性。