Automated vehicles (AVs) are tested in diverse scenarios, typically specified by parameters such as velocities, distances, or curve radii. To describe scenarios uniformly independent of such parameters, this paper proposes a vectorized scenario description defined by the road geometry and vehicles' trajectories. Data of this form are generated for three scenarios, merged, and used to train the motion prediction model VectorNet, allowing to predict an AV's trajectory for unseen scenarios. Predicting scenario evaluation metrics, VectorNet partially achieves lower errors than regression models that separately process the three scenarios' data. However, for comprehensive generalization, sufficient variance in the training data must be ensured. Thus, contrary to existing methods, our proposed method can merge diverse scenarios' data and exploit spatial and temporal nuances in the vectorized scenario description. As a result, data from specified test scenarios and real-world scenarios can be compared and combined for (predictive) analyses and scenario selection.
翻译:自动飞行器(AVs)在不同的假设情景中进行测试,通常由速度、距离或曲线弧形等参数具体确定。为了统一描述与这些参数无关的假设情景,本文件建议采用由道路几何和车辆轨迹界定的矢量化假设情景描述,这种形式的数据为三种假设情景生成,合并并用于培训运动预测模型矢量Net,以便能够预测AV的不可见情景轨迹。预测情景评估指标,VectorNet部分实现的误差低于分别处理三种假设情景数据的回归模型。然而,为了全面概括化,必须确保培训数据有足够的差异。因此,与现有方法相反,我们拟议的方法可以合并不同的假设情景数据,利用病媒情景描述中的空间和时间细微差别。因此,可以比较和合并特定测试情景和现实世界情景中的数据,用于(预测性)分析和情景选择。