We study a pricing problem where a seller has $k$ identical copies of a product, buyers arrive sequentially, and the seller prices the items aiming to maximize social welfare. When $k=1$, this is the so called "prophet inequality" problem for which there is a simple pricing scheme achieving a competitive ratio of $1/2$. On the other end of the spectrum, as $k$ goes to infinity, the asymptotic performance of both static and adaptive pricing is well understood. We provide a static pricing scheme for the small-supply regime: where $k$ is small but larger than $1$. Prior to our work, the best competitive ratio known for this setting was the $1/2$ that follows from the single-unit prophet inequality. Our pricing scheme is easy to describe as well as practical -- it is anonymous, non-adaptive, and order-oblivious. We pick a single price that equalizes the expected fraction of items sold and the probability that the supply does not sell out before all customers are served; this price is then offered to each customer while supply lasts. This extends an approach introduced by Samuel-Cahn for the case of $k=1$. This pricing scheme achieves a competitive ratio that increases gradually with the supply. Subsequent work by Jiang, Ma, and Zhang shows that our pricing scheme is the optimal static pricing for every value of $k$.


翻译:我们研究一个价格问题,即卖主的产品的相同副本为K美元,买主按顺序到达,卖主的价款是旨在最大限度地提高社会福利的物品。当美元=1美元时,这就是所谓的“预言不平等”问题,对此,有一个简单的定价计划,其竞争性比率为1/2美元。在另一端,当美元到达无限时,静态和适应性定价的零用性表现是完全可以理解的。我们为小供应制度提供了一个静态定价计划:美元小,但大于1美元。在我们工作之前,这一设定的最佳竞争比率为1/2美元,它源自单一单位先知不平等。我们的定价计划既简单又实用 -- -- 这是匿名的,非适应性的,而且订单模糊。我们选择了单一种价格,它等于所售物品的预期部分,而供应在满足所有客户之前可能没有售出;然后向每个客户提供价格,最后供应者都得到这种价格。这扩大了塞缪尔米洛-卡公司提出的价格比,这个价格方法是单一单位先知不平等的0.2美元。我们的定价计划既容易又实际描述 -- -- -- 以最高价格方式来取得最佳价格。

0
下载
关闭预览

相关内容

医学人工智能AIM(Artificial Intelligence in Medicine)杂志发表了多学科领域的原创文章,涉及医学中的人工智能理论和实践,以医学为导向的人类生物学和卫生保健。医学中的人工智能可以被描述为与研究、项目和应用相关的科学学科,旨在通过基于知识或数据密集型的计算机解决方案支持基于决策的医疗任务,最终支持和改善人类护理提供者的性能。 官网地址:http://dblp.uni-trier.de/db/journals/artmed/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员