Ultra-High-Definition (UHD) photo has gradually become the standard configuration in advanced imaging devices. The new standard unveils many issues in existing approaches for low-light image enhancement (LLIE), especially in dealing with the intricate issue of joint luminance enhancement and noise removal while remaining efficient. Unlike existing methods that address the problem in the spatial domain, we propose a new solution, UHDFour, that embeds Fourier transform into a cascaded network. Our approach is motivated by a few unique characteristics in the Fourier domain: 1) most luminance information concentrates on amplitudes while noise is closely related to phases, and 2) a high-resolution image and its low-resolution version share similar amplitude patterns.Through embedding Fourier into our network, the amplitude and phase of a low-light image are separately processed to avoid amplifying noise when enhancing luminance. Besides, UHDFour is scalable to UHD images by implementing amplitude and phase enhancement under the low-resolution regime and then adjusting the high-resolution scale with few computations. We also contribute the first real UHD LLIE dataset, \textbf{UHD-LL}, that contains 2,150 low-noise/normal-clear 4K image pairs with diverse darkness and noise levels captured in different scenarios. With this dataset, we systematically analyze the performance of existing LLIE methods for processing UHD images and demonstrate the advantage of our solution. We believe our new framework, coupled with the dataset, would push the frontier of LLIE towards UHD. The code and dataset are available at https://li-chongyi.github.io/UHDFour.
翻译:超高定义( UHD) 照片逐渐成为高级成像设备的标准配置。 新的标准揭示了现有低光图像强化方法( LLIE ) 中的许多问题, 特别是在处理联合光亮增强和清除噪音而又保持效率等复杂问题时。 与现有解决空间域问题的方法不同, 我们提出了一个新的解决方案( UUHDFour ), 将 Fourier 转换成一个连锁网络。 我们的方法受到Fourier 域若干独特特性的驱动:(1) 多数亮度信息集中在振幅上,而噪音与阶段密切相关;(2) 高分辨率图像及其低分辨率版本也存在类似的振幅模式。 将 Fourier 嵌入我们的网络, 低光度图像的振幅和阶段被单独处理, 避免在增强光度时放大噪音。 此外, UUDFD在低分辨率和阶段强化度框架下, 然后调整高分辨率尺度。 我们还在系统化的LIDLIE( LLIE) 图像处理系统化、 清晰度/ climicalflal1 的当前图像处理方法中, 将显示我们现有的LIEADR- dal- dal- dal- dalde- dal- dalx1 和现有的透明级的透明/ disal- dal- disl) 。