Ultra-High-Definition (UHD) photo has gradually become the standard configuration in advanced imaging devices. The new standard unveils many issues in existing approaches for low-light image enhancement (LLIE), especially in dealing with the intricate issue of joint luminance enhancement and noise removal while remaining efficient. Unlike existing methods that address the problem in the spatial domain, we propose a new solution, UHDFour, that embeds Fourier transform into a cascaded network. Our approach is motivated by a few unique characteristics in the Fourier domain: 1) most luminance information concentrates on amplitudes while noise is closely related to phases, and 2) a high-resolution image and its low-resolution version share similar amplitude patterns.Through embedding Fourier into our network, the amplitude and phase of a low-light image are separately processed to avoid amplifying noise when enhancing luminance. Besides, UHDFour is scalable to UHD images by implementing amplitude and phase enhancement under the low-resolution regime and then adjusting the high-resolution scale with few computations. We also contribute the first real UHD LLIE dataset, \textbf{UHD-LL}, that contains 2,150 low-noise/normal-clear 4K image pairs with diverse darkness and noise levels captured in different scenarios. With this dataset, we systematically analyze the performance of existing LLIE methods for processing UHD images and demonstrate the advantage of our solution. We believe our new framework, coupled with the dataset, would push the frontier of LLIE towards UHD. The code and dataset are available at https://li-chongyi.github.io/UHDFour.


翻译:超高定义( UHD) 照片逐渐成为高级成像设备的标准配置。 新的标准揭示了现有低光图像强化方法( LLIE ) 中的许多问题, 特别是在处理联合光亮增强和清除噪音而又保持效率等复杂问题时。 与现有解决空间域问题的方法不同, 我们提出了一个新的解决方案( UUHDFour ), 将 Fourier 转换成一个连锁网络。 我们的方法受到Fourier 域若干独特特性的驱动:(1) 多数亮度信息集中在振幅上,而噪音与阶段密切相关;(2) 高分辨率图像及其低分辨率版本也存在类似的振幅模式。 将 Fourier 嵌入我们的网络, 低光度图像的振幅和阶段被单独处理, 避免在增强光度时放大噪音。 此外, UUDFD在低分辨率和阶段强化度框架下, 然后调整高分辨率尺度。 我们还在系统化的LIDLIE( LLIE) 图像处理系统化、 清晰度/ climicalflal1 的当前图像处理方法中, 将显示我们现有的LIEADR- dal- dal- dal- dalde- dal- dalx1 和现有的透明级的透明/ disal- dal- disl) 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年8月4日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员