Automating a robotic task, e.g., robotic suturing can be very complex and time-consuming. Learning a task model to autonomously perform the task is invaluable making the technology, robotic surgery, accessible for a wider community. The data of robotic surgery can be easily logged where the collected data can be used to learn task models. This will result in reduced time and cost of robotic surgery in which a surgeon can supervise the robot operation or give high-level commands instead of low-level control of the tools. We present a data-set of needle insertion in soft tissue with two arms where Arm 1 inserts the needle into the tissue and Arm 2 actively manipulate the soft tissue to ensure the desired and actual exit points are the same. This is important in real-surgery because suturing without active manipulation of tissue may yield failure of the suturing as the stitch may not grip enough tissue to resist the force applied for the suturing. We present a needle insertion dataset including 60 successful trials recorded by 3 pair of stereo cameras. Moreover, we present Deep-robot Learning from Demonstrations that predicts the desired state of the robot at the time step after t (which the optimal action taken at t yields) by looking at the video of the past time steps, i.e. n step time history where N is the memory time window, of the task execution. The experimental results illustrate our proposed deep model architecture is outperforming the existing methods. Although the solution is not yet ready to be deployed on a real robot, the results indicate the possibility of future development for real robot deployment.


翻译:自动自动操作, 例如机器人自闭可能非常复杂且耗时。 学习自主执行任务的任务模式非常宝贵, 使得技术、 机器人手术、 更广大社区可以使用。 机器人手术的数据可以很容易地登录, 在那里收集的数据可以用来学习任务模型。 这将降低机器人手术的时间和成本, 使外科医生能够监督机器人操作或给予高层次命令, 而不是低层次控制工具。 我们展示了针插入软组织的数据集, 上面有两臂, 手臂将针插入组织, 手臂积极操作软组织, 以确保想要和实际的退出点相同。 这在实际手术中很重要, 因为没有积极操作组织数据可以用来学习任务模型。 这会降低机器人手术的时间和成本, 因为手术的缝合可能无法控制足够的组织来抵抗对工具的调控力。 我们展示了针插入数据集, 包括3对立立式相机所记录的60个拟议成功测试。 此外, 我们从演示中学习了深度机器人插入的针片, 预示着实际执行结果, 以及实际退出组织的组织结构的操作结果, 在时间段后, 显示我们最精确的动作的动作, 显示, 前进的动作是历史的动作的动作 。 。 显示, 前进过程的动作的动作的动作的动作的动作是 。 。 。 的动作的动作的动作的动作的动作的动作的动作是,,, 的动作的动作的动作是,,, 前进的动作的动作的动作的动作的动作的动作的动作的动作是,,, 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年12月10日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关论文
Top
微信扫码咨询专知VIP会员