Contextualized word embeddings can lead to state-of-the-art performances in natural language understanding. Recently, a pre-trained deep contextualized text encoder such as BERT has shown its potential in improving natural language tasks including abstractive summarization. Existing approaches in dialogue summarization focus on incorporating a large language model into summarization task trained on large-scale corpora consisting of news articles rather than dialogues of multiple speakers. In this paper, we introduce self-supervised methods to compensate shortcomings to train a dialogue summarization model. Our principle is to detect incoherent information flows using pretext dialogue text to enhance BERT's ability to contextualize the dialogue text representations. We build and fine-tune an abstractive dialogue summarization model on a shared encoder-decoder architecture using the enhanced BERT. We empirically evaluate our abstractive dialogue summarizer with the SAMSum corpus, a recently introduced dataset with abstractive dialogue summaries. All of our methods have contributed improvements to abstractive summary measured in ROUGE scores. Through an extensive ablation study, we also present a sensitivity analysis to critical model hyperparameters, probabilities of switching utterances and masking interlocutors.


翻译:在自然语言理解中,内含字嵌入的内含文字可以导致最先进的艺术表现。最近,如BERT这样的经过事先培训的深背景文字编码器展示了其在改进自然语言任务(包括抽象的概括化)方面的潜力。在对话中,现有的概括式方法侧重于将大语言模型纳入包化任务中,对大型公司(由新闻报道组成)而不是对多个发言者的对话进行培训。在本文件中,我们引入了自我监督的方法,以弥补缺陷,对对话总结模型进行培训。我们的原则是利用借口对话文本探测不相容的信息流动,以提高BERT将对话文本表达方式背景化的能力。我们利用强化的BERT建立并微调的抽象对话概括化模式。我们从经验上评估了我们与最近引入的带有抽象对话摘要的数据集SAMSumampe的抽象对话摘要。我们的所有方法都有助于改进ROUGE的抽象摘要。我们通过广泛的缩略图研究,还提出了对关键模型的模拟模拟对话的敏感性分析。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员