Contextualized word embeddings can lead to state-of-the-art performances in natural language understanding. Recently, a pre-trained deep contextualized text encoder such as BERT has shown its potential in improving natural language tasks including abstractive summarization. Existing approaches in dialogue summarization focus on incorporating a large language model into summarization task trained on large-scale corpora consisting of news articles rather than dialogues of multiple speakers. In this paper, we introduce self-supervised methods to compensate shortcomings to train a dialogue summarization model. Our principle is to detect incoherent information flows using pretext dialogue text to enhance BERT's ability to contextualize the dialogue text representations. We build and fine-tune an abstractive dialogue summarization model on a shared encoder-decoder architecture using the enhanced BERT. We empirically evaluate our abstractive dialogue summarizer with the SAMSum corpus, a recently introduced dataset with abstractive dialogue summaries. All of our methods have contributed improvements to abstractive summary measured in ROUGE scores. Through an extensive ablation study, we also present a sensitivity analysis to critical model hyperparameters, probabilities of switching utterances and masking interlocutors.
翻译:在自然语言理解中,内含字嵌入的内含文字可以导致最先进的艺术表现。最近,如BERT这样的经过事先培训的深背景文字编码器展示了其在改进自然语言任务(包括抽象的概括化)方面的潜力。在对话中,现有的概括式方法侧重于将大语言模型纳入包化任务中,对大型公司(由新闻报道组成)而不是对多个发言者的对话进行培训。在本文件中,我们引入了自我监督的方法,以弥补缺陷,对对话总结模型进行培训。我们的原则是利用借口对话文本探测不相容的信息流动,以提高BERT将对话文本表达方式背景化的能力。我们利用强化的BERT建立并微调的抽象对话概括化模式。我们从经验上评估了我们与最近引入的带有抽象对话摘要的数据集SAMSumampe的抽象对话摘要。我们的所有方法都有助于改进ROUGE的抽象摘要。我们通过广泛的缩略图研究,还提出了对关键模型的模拟模拟对话的敏感性分析。