Federated learning (FL) takes a first step towards privacy-preserving machine learning by training models while keeping client data local. Models trained using FL may still leak private client information through model updates during training. Differential privacy (DP) may be employed on model updates to provide privacy guarantees within FL, typically at the cost of degraded performance of the final trained model. Both non-private FL and DP-FL can be solved using variants of the federated averaging (FedAvg) algorithm. In this work, we consider a heterogeneous DP setup where clients require varying degrees of privacy guarantees. First, we analyze the optimal solution to the federated linear regression problem with heterogeneous DP in a Bayesian setup. We find that unlike the non-private setup, where the optimal solution for homogeneous data amounts to a single global solution for all clients learned through FedAvg, the optimal solution for each client in this setup would be a personalized one even for homogeneous data. We also analyze the privacy-utility trade-off for this setup, where we characterize the gain obtained from heterogeneous privacy where some clients opt for less strict privacy guarantees. We propose a new algorithm for FL with heterogeneous DP, named FedHDP, which employs personalization and weighted averaging at the server using the privacy choices of clients, to achieve better performance on clients' local models. Through numerical experiments, we show that FedHDP provides up to $9.27\%$ performance gain compared to the baseline DP-FL for the considered datasets where $5\%$ of clients opt out of DP. Additionally, we show a gap in the average performance of local models between non-private and private clients of up to $3.49\%$, empirically illustrating that the baseline DP-FL might incur a large utility cost when not all clients require the stricter privacy guarantees.
翻译:联邦学习联盟(FL) 通过培训模式向隐私保存机器学习迈出第一步,通过培训模式向隐私保存机器学习迈出第一步,同时保持客户数据本地化。使用FL培训的模型在培训期间仍然可能通过模式更新泄露私人客户信息。在模式更新中,可以使用差异隐私(DP),在FL内部提供隐私保障,通常以最后培训模式的性能退化为代价。非私人FL和DP-FL都可以使用联合平均(FedAvg)算法变量解决。在这项工作中,我们考虑在客户需要不同程度的隐私保障的情况下,建立混合的DP(DP)设置。首先,我们分析在Bayesian设置中,使用差异化的DP(DP),使用差异化的(DP),使用差异化的(DP)模式,使用差异化的(DP),采用差异化的(DP),采用单一数据,为所有客户提供单一的全球解决方案。在FedAvg中,对于每个客户来说,最佳的解决方案将是个化的(FedAV)平均数据。我们还要分析这个设置的隐私交易交易(DP)交易)交易(DDDDDDDD)交易中,我们考虑从不同隐私的基底基底基数模式的基数(我们从比较的基数的基数,在其中取得收益,在使用更精确化(FMDDML)客户之间,在使用更精确化(FMDD),在使用更精确化(FM),在使用更精确化(FM)客户之间,在使用)。