We present a Newton-Krylov solver for a viscous-plastic sea-ice model. This constitutive relation is commonly used in climate models to describe the material properties of sea ice. Due to the strong nonlinearity introduced by the material law in the momentum equation, the development of fast, robust and scalable solvers is still a substantial challenge. In this paper, we propose a novel primal-dual Newton linearization for the implicitly-in-time discretized momentum equation. Compared to existing methods, it converges faster and more robustly with respect to mesh refinement, and thus enables numerically converged sea-ice simulations at high resolutions. Combined with an algebraic multigrid-preconditioned Krylov method for the linearized systems, which contain strongly varying coefficients, the resulting solver scales well and can be used in parallel. We present experiments for two challenging test problems and study solver performance for problems with up to 8.4 million spatial unknowns.
翻译:我们提出了一个牛顿-克里洛夫(Newton-Krylov) 的粘结塑料海洋-冰模型解析器。 这种构成关系在气候模型中通常用来描述海冰的物质特性。 由于物质法在动力方程式中引入了很强的无线性,因此开发快速、稳健和可缩放的溶解器仍是一个巨大的挑战。 在本文中,我们为隐含的离散动力方程式提出了一个新颖的原始双向牛顿线化方法。 与现有方法相比, 它在网状精细方面会更快和更加有力, 从而能够进行高分辨率的海冰模拟。 结合了线性化系统中包含极不相同的系数、 由此产生的溶解器尺度, 并可以同时使用。 我们提出两个具有挑战性的测试问题的实验, 并研究高达840万个空间未知的问题的解答器性表现。