Indoor panorama typically consists of human-made structures parallel or perpendicular to gravity. We leverage this phenomenon to approximate the scene in a 360-degree image with (H)orizontal-planes and (V)ertical-planes. To this end, we propose an effective divide-and-conquer strategy that divides pixels based on their plane orientation estimation; then, the succeeding instance segmentation module conquers the task of planes clustering more easily in each plane orientation group. Besides, parameters of V-planes depend on camera yaw rotation, but translation-invariant CNNs are less aware of the yaw change. We thus propose a yaw-invariant V-planar reparameterization for CNNs to learn. We create a benchmark for indoor panorama planar reconstruction by extending existing 360 depth datasets with ground truth H\&V-planes (referred to as PanoH&V dataset) and adopt state-of-the-art planar reconstruction methods to predict H\&V-planes as our baselines. Our method outperforms the baselines by a large margin on the proposed dataset.
翻译:室内全景通常由与重力平行或垂直的人为结构组成。 我们利用这个现象以360度的图像(H) orizonal-plan-planes和(V)-ertic-planes)来接近场景。 为此,我们提出一个有效的分解和共化战略,根据对平面方向的估计,将像素分开; 然后, 下一个例分解模块可以征服每个飞机方向组中飞机群集的任务。 此外, V-planes的参数取决于相机 yaw 旋转, 但翻译- 反向有线电视的CNN不太了解亚沃变化。 我们因此建议为CNNs学习一个亚瓦- 异性V- 平面重计。 我们为室内全景平面规划重建建立一个基准, 扩大现有的360 深度数据集, 使用地面真象 H ⁇ V 平面图( 称为 PanoH&V 数据集), 并采用最先进的平面重建方法来预测H ⁇ V plane- planes 的基线。 我们的方法比拟议数据集的基线要高出一个大边缘的基线。