Indoor panorama typically consists of human-made structures parallel or perpendicular to gravity. We leverage this phenomenon to approximate the scene in a 360-degree image with (H)orizontal-planes and (V)ertical-planes. To this end, we propose an effective divide-and-conquer strategy that divides pixels based on their plane orientation estimation; then, the succeeding instance segmentation module conquers the task of planes clustering more easily in each plane orientation group. Besides, parameters of V-planes depend on camera yaw rotation, but translation-invariant CNNs are less aware of the yaw change. We thus propose a yaw-invariant V-planar reparameterization for CNNs to learn. We create a benchmark for indoor panorama planar reconstruction by extending existing 360 depth datasets with ground truth H\&V-planes (referred to as PanoH&V dataset) and adopt state-of-the-art planar reconstruction methods to predict H\&V-planes as our baselines. Our method outperforms the baselines by a large margin on the proposed dataset.


翻译:室内全景通常由与重力平行或垂直的人为结构组成。 我们利用这个现象以360度的图像(H) orizonal-plan-planes和(V)-ertic-planes)来接近场景。 为此,我们提出一个有效的分解和共化战略,根据对平面方向的估计,将像素分开; 然后, 下一个例分解模块可以征服每个飞机方向组中飞机群集的任务。 此外, V-planes的参数取决于相机 yaw 旋转, 但翻译- 反向有线电视的CNN不太了解亚沃变化。 我们因此建议为CNNs学习一个亚瓦- 异性V- 平面重计。 我们为室内全景平面规划重建建立一个基准, 扩大现有的360 深度数据集, 使用地面真象 H ⁇ V 平面图( 称为 PanoH&V 数据集), 并采用最先进的平面重建方法来预测H ⁇ V plane- planes 的基线。 我们的方法比拟议数据集的基线要高出一个大边缘的基线。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年10月28日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关资讯
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员