Ransomware attacks have emerged as one of the most significant cybersecurity threats. Despite numerous proposed detection and defense methods, existing approaches face two fundamental limitations in large-scale industrial applications: intolerable system overheads and notorious alert fatigue. To address these challenges, we propose CanCal, a real-time and lightweight ransomware detection system. Specifically, CanCal selectively filters suspicious processes by the monitoring layers and then performs in-depth behavioral analysis to isolate ransomware activities from benign operations, minimizing alert fatigue while ensuring lightweight computational and storage overhead. The experimental results on a large-scale industrial environment~(1,761 ransomware, ~3 million events, continuous test over 5 months) indicate that CanCal is as effective as state-of-the-art techniques while enabling rapid inference within 30ms and real-time response within a maximum of 3 seconds. CanCal dramatically reduces average CPU utilization by 91.04% (from 6.7% to 0.6%) and peak CPU utilization by 76.69% (from 26.6% to 6.2%), while avoiding 76.50% (from 3,192 to 750) of the inspection efforts from security analysts. By the time of this writing, CanCal has been integrated into a commercial product and successfully deployed on 3.32 million endpoints for over a year. From March 2023 to April 2024, CanCal successfully detected and thwarted 61 ransomware attacks, demonstrating the effectiveness of CanCal in combating sophisticated ransomware threats in real-world scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员